Ref No:

Sri Krishna Institute of Technology, Bengaluru-560090

Academic Year - 2019-2020

Academic Evaluation and Monitoring Cell

Program:	BE- Electrical and Electronics Engineering						
Semester:	3						
Course Code:	18EEL37						
Course Title:	ELECTRICAL MACHINE LAB-1						
Credit/L-T-P:	2/0-2-2						
Total Contact Hours:	40						
Course Plan Author:	Avinash S						

#29, Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bengaluru – 560090, Karnataka, India Phone / Fax :080-23721477/28392221/23721315 Web: www.skit.org, e-mail:

Table of Contents

1. Laboratory Overview..... 2. Laboratory Content.....

LABORATORY PLAN - CAY 2019	BE-5-EE-SKIT-Ph5b1-F02-V2.2
3. Laboratory Material	
4. Laboratory Prerequisites:	
5. Content for Placement, Profession, HE and GATE	
B. Laboratory Instructions	
1. General Instructions	
2. Laboratory Specific Instructions	6
C. OBE PARAMETERS	6
1. Laboratory Outcomes	
2. Laboratory Applications	
3. Mapping And Justification	
4. Articulation Matrix	
5. Curricular Gap and Experiments	
6. Experiments Beyond Syllabus	
D. COURSE ASSESSMENT	
1. Laboratory Coverage	
2. Continuous Internal Assessment (CIA)	
E. EXPERIMENTS	
Experiment 01 : Structure of C program	
Experiment 02 : Keywords and identifiers	
Experiment 03 :	
Experiment 04 :	
F. Content to Experiment Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	

INSTRUCTIONS TO TEACHERS

- Classroom / Lab activity shall be started after taking attendance. ٠
- Attendance shall only be signed in the classroom by students. •
- Three hours attendance should be given to each Lab. ٠
- Use only Blue or Black Pen to fill the attendance. •
- Attendance shall be updated on-line & status discussed in DUGC. •
- No attendance should be added to late comers. •
- Modification of any attendance, over writings, etc is strictly prohibited. •
- Updated register is to be brought to every academic review meeting as per the COE. •

Note : Remove "Table of Content" before including in CP Book

18EEL37 : ELECTRICAL MACHINE LAB-1

A. LABORATORY INFORMATION

1. Lab Overview

Degree:	B.Tech	Program:	EE
Year / Semester :	2/3	Academic Year:	2019
Course Title:	Electrical Machine Lab-1	Course Code:	18EEL37
Credit / L-T-P:	2/0-2-2	SEE Duration:	180 Minutes
Total Contact Hours:	40 Hrs	SEE Marks:	60Marks
CIA Marks:	40	Assignment	1 / Module
Course Plan Author:	Avinash S	Sign	Dt :
Checked By:		Sign	Dt :

2. Lab Content

Unit	Title of the Experiments	Lab Hours	Concept	Blooms Level
1	 a) Open Circuit and Short circuit tests on single phase step up or step down transformer and predetermination of Efficiency and regulation (b) Calculation of parameters of equivalent circuit by conducting Open Circuit and Short circuit test 	3	Analysis of Losses in transformers	L4 Analyze
2	Sumpner's test on similar transformers and determination of combined and individual transformer efficiency	3	Analysis of Combined losses in transformers	L4
3	Parallel operation of two dissimilar single-phase transformers of different kVA and determination of load sharing and analytical verification given the Short circuit test data.	3	Analysis of load distribution	L4
4	Polarity test and connection of 3 single-phase transformers in star – delta and determination of efficiency and regulation under balanced resistive load	3	Analysis of polarity connection	L4
5	Comparison of performance of 3 single-phase transformers in delta – delta and V – V (open delta) connection under load.	3	Analysis of connection in 3 phase transformers	L4
6	Scott connection with balanced and unbalanced loads.	3	Analysis of 3 phase- 2phase conversion	L4
7	Separation of hysteresis and eddy current losses in single phase transformer.	3	Analysis of Seperation of losses	L4
8	Voltage regulation of an alternator by EMF and MMF methods.	3	Analysis of voltage in generators	L4
9	Voltage regulation of an alternator by ZPF method.	3	Analysis of voltage in alternators	L4
10	Slip test – Measurement of direct and quadrature axis reactance and predetermination of regulation of salient pole synchronous machines.	3	Analysis of speed when connected in load	L4
11	Performance of synchronous generator connected to infinite bus, under constant power and variable excitation & vice - versa.	3	Analysis of excitation of generators	L4
12	Power angle curve of synchronous generator	3	Analysis Power Angle curve of alternator	L4

3. Lab Material

Unit	Details	Available
1	Text books	
	Nagaranth kothari, V.Kamaraju McGraw Hill 5 th Edition, 2013.	In Lib
2	Reference books	
	B L Theraja	In dept
3	Others (Web, Video, Simulation, Notes etc.)	
		Not Available

4. Lab Prerequisites:

-	-	Base Course:		-	-
SNo	Course	Course Name	Topic / Description	Sem	Remarks
	Code				
1	18EE44	Electrical machine	Knowledge of AC and DC generators	4	
2	18EE33	Transformers and	Knowledge on Transformer operation	3	
		generators			

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

5. General Instructions

SNo	Instructions	Remarks
1	Keep the lab neatly.	
2	Maintain silence.	
3	Maintain your lab observation and lab manual.	
4	Prepare your experiment in well advance.	
5	Do not leave the lab without in-charge staff permission.	
6	Do not move around in the lab.	
7	Do not misplace the equipments.	
8	Check the power supply before use.	
9	Maintain discipline in the lab.	
10	After completion of your experiment switch off the power supply.	

6. Lab Specific Instructions

Specific Instructions	Remarks
The equipment must be connected firmly to the mother ground	
The electrodes must be cleaned properly before use	
Before starting the experiment, make sure the electrodes are properly	
aligned to zero reading	
Any part of the equipment should not be touched	
Do not enter High-Voltage area without discharge	
Sudden High-Voltage should not be applied to the specimen	
Do not enter the test-bay while the equipments are in operation	
Ignore the first one reading as the air between the electrodes may be ionized	
	Specific Instructions The equipment must be connected firmly to the mother ground The electrodes must be cleaned properly before use Before starting the experiment, make sure the electrodes are properly aligned to zero reading Any part of the equipment should not be touched Do not enter High-Voltage area without discharge Sudden High-Voltage should not be applied to the specimen Do not enter the test-bay while the equipments are in operation Ignore the first one reading as the air between the electrodes may be ionized

LABORATORY PLAN - CAY 2019 B. OBE PARAMETERS

1. Lab / Course Outcomes

Sl no	COs	Teach	Concept	Instr Method	Assessment	Blooms'
					Method	Level
1	a) Open Circuit and Short circuit tests on single phase step up or step down transformer and predetermination of Efficiency and regulation (b) Calculation of parameters of equivalent circuit by conducting Open Circuit and Short circuit test	10	Analysisof Losses in transformer s	Demonstrate	Unit Test, Viva Voce	L3
2	Sumpner's test on similar transformers and determination of combined and individual transformer efficiency	06	Analysis of Combined losses in transformer s	Demonstrate	Assignment	L3
3	Parallel operation of two dissimilar single-	07	Analysis of	Demonstrate	Assignment	L3
	phase transformers of different kVA and		load distribution		and unit	
	determination of load sharing and analytical		alstribution		1050	
	verification given the Short circuit test data.					
4	Polarity test and connection of 3 single-phase	03	Analysis of	Simulation	Assignment	L3
	transformers in star – delta and determination		polarity			
	of efficiency and regulation under balanced		connection			
	resistive load					
5	Comparison of performance of 3 single-phase transformers in delta – delta and V – V (open delta) connection under load.	03	Analysis of connection in 3 phase transformer s	Tutorial	Unit test	L4
6	Scott connection with balanced and unbalanced loads.	03	Analysis of 3 phase- 2phase conversion	Tutorial	Assignment	L4
7	Separation of hysteresis and eddy current losses in single phase transformer.	03	Analysis of Seperation of losses	Demonstrate	Assignment and unit Test	L4
8	Voltage regulation of an alternator by EMF and	03	Analysis of	Demonstrate	Assignment	L4
	MMF methods.		voltage in generators		Viva Voce	
9	Voltage regulation of an alternator by ZPF	03	Analysis of	Demonstrate	Assignment	L5
	method.		voltage in		Viva Voce	
10	Slip test – Measurement of direct and	03	Analysis of	Demonstrate	Assianment	L4
	uadrature axis reactance and		speed when		Viva Voce	
	predetermination of regulation		connected in load			
			in toad			
11	Performance of synchronous machines. Performance of synchronous generator connected to infinite bus, under constant power and variable excitation & vice - versa.	03	Analysis of excitation of generators		Assignment	L4
12	Power angle curve of synchronous generator	03	Analysis Power Angle curve of alternator		Assignment Unit Test	L4
-	Total	36hrs	-	-	-	-

2. Lab Applications

SNo	Application Area	CO	Level
1	Operation of practical transformer under no - load , calculating of equivalent circuit parameters and predetermination of efficiency- commercial and all-day. Voltage regulation and its significance.	CO1	L3
2	Analysis of Combined losses in transformers under on - load condition	CO2	L3
3	parallel operation multiple transformers and load distribution	CO3	L3
4	Checking polarity connection during parallel operation of transformers	CO4	L3
5	Analysis of connection in 3 phase transformers when one of the phase fails	CO5	L4
6	Analysis of conversion of phase in 3 phase transformers	CO6	L4
7	Separation of hysteresis and eddy current losses in single phase transformer.	C07	L4
8	Voltage regulation of an alternator	CO8	L4
9	Analysis of voltage in alternators	CO9	L5
10	Analysis of speed when connected in load	CO10	L4
11	Analysis of excitation of generators	CO11	L4
12	Analysis Power Angle curve of alternator	CO112	L4
L		1	

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO – PO MAPPING)

-	Course Outcomes	Program Outcomes												
#	COs		PO	PO3	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	Level
			2		4	5	6	7	8	9	0	1	2	
18EEL37.1	Experimentally verify the	X	X											L3
	characteristics of Transformer by													
	open circuit and short ciruit		V											
18EEL37.2	Experimentally verify the		X											L3
	Liging two similar transformers													
18FEL 27.2	Analyze the load sharing of	-	X		X									10
102223/.3	transformers													L3
18EEL37.4	Analyze of connection of	X	Х											L3
	transformer													
18EEL37.5	Analyze different winding		Х		Х									L4
	connection of transformer.													
18EEL37.6	Analyze conversion of 3phase to	X	X											L4
	2phase													
18EEL37.7	Experimentally verify separation of	X	X											L4
	of losses in synchronous													
18EEL 27.8	Applyze the voltage regulation of		V			-	-		-	-				14
1022237.0	different methods in generaor													L4
18FFL 37.9	Analysis of voltage in alternators	X	X											14
18EEL37.10	Analysis of speed when		Х		Х									L4
	connected in load													
18EEL37.11	Analysis of excitation of	1	X		X									L4

LABORATORY PLAN - CAY 2019							В	E-5-E	E-SK	(IT-Ph	15b1-F	-02-V	2.2	
	generators													
18EEL37.12	Analysis Power Angle alternator	curve of		Х		Х								L4

Note: Mention the mapping strength as 1, 2, or 3

4. Mapping Justification

Mappir	ng	Mapping	Justification
		Level	
CO	PO	-	•
CO1	PO1	L3	Knowledge on Transformers during open circuit and short ciruit
CO1	PO2	L3	analysing the characteristics of Transformer by open circuit and short ciruit
CO2	PO1	L3	Knowledge on parallel operation of transformer using two similar transformers
CO2	PO2	L3	analysing the characteristics of transformer using two similar transformers
CO3	PO2	L3	analytical verification of two dissimilar single-phase transformers of different kVA
CO3	PO4	L3	Investigating the operation of two dissimilar single-phase transformers of different kVA and load sharing
CO4	PO1	L3	Knowledge of Transformers in different connection
CO4	PO2	L3	analytical verification of Transformers in different connection
CO5	PO2	L4	Analysis of connection in 3 phase transformers when one of the phase fails
CO5	PO4	L4	Devolpment of solution for 3 phase transformers when one of the phase fails
CO6	PO1	L4	Knowledge on 3phase transformer
CO6	PO2	L4	Analyze conversion of 3phase to 2phase
CO7	PO1	L4	Knowledge on synchronous generator
CO7	PO2	L4	analytical verification on separation of losses in synchronous generator
CO8	PO1	L4	Knowledge on voltage regulation of generator
CO8	PO2	L3	Analyze the voltage regulation of different methods in generator
CO9	PO1	L3	Knowledge on voltage regulation of generator
CO9	PO2	L3	Analysis of voltage in alternators
CO10	PO2	L4	Analysis of speed when connected in load
CO10	PO4	L4	Investigating the speed variations when connected to load
CO11	PO2	L4	Analysis on variable excitation of generators
CO11	PO4	L4	Investigating the variable excitation of generators
CO12	PO2	L4	Knowledge on Power Angle curve of alternator
CO12	PO4	L4	Analysis Power Angle curve of alternator

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					

Note: Anything not covered above is included here.

LABORATORY PLAN - CAY 2019 C. COURSE ASSESSMENT

1. Course Coverage

Unit	Title	Teachi	No. of question in Exam					CO	Levels		
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
1	a) Open Circuit and Short circuit	Hours 03	1	-	-	-	-	-	1	CO1	L2
	tests on single phase step up or										
	step down transformer and predetermination of Efficiency and										
	regulation										
	(b) Calculation of parameters of										
	equivalent circuit by conducting										
	open circuit and short circuit test										
2	Sumpner's test on similar	03	1	-	-	-	-	-	1	CO2	L3
	transformers and determination of										
	transformer efficiency										
3	Parallel operation of two dissimilar	03	1	-	-	-	-	-	1	CO3	L3
	single-phase transformers of										
	different kVA and determination of										
	load sharing and analytical										
	verification given the Short circuit										
	test data.										
4	Polarity test and connection of 3	03	1	-	-	-	-	-	1	CO4	L3
	single-phase transformers in star –										
	delta and determination of										
	efficiency and regulation										
	under balanced resistive load										
5	Comparison of performance of 3	03	1	-	-	-	-	-	1	CO5	L4
	- delta and V - V (open delta)										
	connection under load.										
6	Scott connection with balanced	03	-	1	-	-	-	-	1	CO6	L4
	and unbalanced loads.										
7	Separation of hysteresis and eddy	03	-	1	-	-	-	-	1	C07	L4
	transformer.										
8	Voltage regulation of an alternator	03	-	1	-	-	-	-	1	CO8	L4
	by EMF and MMF methods.										
9	Voltage regulation of an alternator	03	-	1	-	-	-	-	1	CO9	L4
	by ZPF method.										
10	Slip test – Measurement of direct	03	-	1	-	-	-	-	1	CO10	L4
	and quadrature axis reactance and										
	predetermination of regulation										
	of salient pole										
	synchronous machines.										
11	Performance of synchronous	03	-	-	1	-	-	-	1	CO11	L4
	bus, under constant power and										
	variable excitation & vice -										
10	Versa.	200								C010	
1 12	rower andle curve of synchro	NUULS	- 1		1			I – I	1 I	10012	I L4

LABORATORY PLAN - CAY 2019 BE-5-EE-SKIT-Ph5b1-F02-V2.2								02-V2.2			
	generator										
-	Total	36	5	5	5	5	5	5	20	-	-
		0-	.	<u> </u>	U		<u> </u>	<u> </u>			<u> </u>

Note: Write CO based on the theory course.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	30	CO1, CO2, CO3, CO4	L23, L3
CIA Exam – 2	30	CO5, CO6, CO7,	L1, L2, L3
CIA Exam – 3	30	CO5, CO6,	L1, L2, L3
Assignment - 1	05	CO1, CO2, CO3, CO4	L2, L3, L4
Assignment - 2	05	CO5, CO6, CO7,	L1, L2, L3
Assignment - 3	05	CO8,	L1, L2, L3
Seminar - 1	05	CO1, CO2, CO3, CO4	L2, L3, L4
Seminar - 2	05	CO5, CO6,	L2, L3, L4
Seminar - 3	05	CO8,	L2, L3, L4
Other Activities – define –		CO1	L2, L3, L4
Slip test			
Final CIA Marks	40	-	-

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	05 Marks
2	Record Writing	10 Marks for each Expt
3	Internal Exam Assessment	25 Marks
4	Internal Assessment	15 Marks
5	SEE	80 Marks
-	Total	100 Marks

D. EXPERIMENTS

Experiment 01 : OPEN CIRCUIT & SHORT CIRCUIT TEST ON A SINGLE PHASE TRANSFORMER:

-	Experiment No.:	1	Marks			Date		Date			
						Planned	k	Conducted			
1	Titlle		OPEN CI	CUIT & S	HORT	CIRCUIT	TEST ON A SIN	GLE PHASE 1	FRANSFORMER		
2	Course Outcomes	Exp cirv	perimenta uit	ly verify.	the c	haracteris	tics of Transfo	rmer by ope	n circuit and short		
3	Aim	To pre	 perform open circuit and short circuit test on a single phase transformer and to e-determine the efficiency, regulation and equivalent circuit of the transformer 								
4	Material / Equipment										
	Required	S	il.No. ec	uipment	-	Туре	Rar	nge	Quantity		
			1 Ve	oltmeter		MI	(0-300)V	, (0-150)V	1 no, 1 no		
			2 A	mmeter		MI	(0-2)A ,	(0-20)A	1 no, 1 no		
			3 W	attmeter	Dyna	amo type	(0-300)V (0-2)A LPF	1 NO		
			4 W	attmeter	Dyna	amo type	(0-150)V (C	-10)A UPF	1 NO		
5	Theory, Formula,	Fin	id the equ	ivalent cir	rcuit p	parameter	s Ro, Xo, Ro1, F	R02, X01 and	X02 from the O. C.		
	Principle, Concept	and	and S. C. Test results and draw the equivalent circuit referred to L. V. side as well as								
		Н. `	V. side No	load pow	ver fac	ctor, cos fi	₀= Wo / (Vo*lo)				
				S	short c	circuit pow	rer factor, cos fit	_{sc} = Wsc / (Vs	sc*lsc).		

		$R_{0} = \frac{V_{1}}{I_{w}} \text{ where Iw} = 10 \cos \Phi 0 X_{0} = \frac{V_{1}}{I_{m}} \text{ Where Im} = 10 \sin \Phi 0$ $R_{01} = \frac{W_{sc}}{I_{sc}^{2}} X_{01} = \sqrt{Z_{01}^{2} - R_{01}b^{2}}$ $Z_{01} = \frac{V_{sc}}{I_{sc}} X_{02} = K^{2} X_{01} \text{ where } K = \frac{V_{2}}{V_{1}} = \text{Transformation Ratio}$
6	Procedure, Program,	Open circuit test:
	Pseudo Code	1. Connections are made as per the circuit diagram.
		2. Ensure that variac is set to zero output voltage position before starting the experiment.
		3. Switch ON the supply. Now apply the rated voltage to the Primary winding by using Variac.
		4. The readings of the Voltmeter, ammeter and wattmeter are noted down in Tabular form.
		5. Then Variac is set to zero output position and switch OFF the supply.
		6. Calculate $\mathbf{R}_{\mathbf{o}}$ and $\mathbf{X}_{\mathbf{o}}$ from the readings.
		Short Circuit Test:
		1. Connections are made as per the circuit diagram.
		2. Ensure that variac is set to zero output voltage position before starting the experiment.
		3. Switch ON the supply. Now apply the rated Current to the Primary winding by using Variac.
		4 The readings of the Voltmeter, ammeter and wattmeter are noted down in Tabular form.
		5. Then Variac is set to zero output position and switch OFF the supply.
		6. Calculate \mathbf{R}_{o1} and \mathbf{X}_{o1} from the readings.

LABO	DRATORY PLAN - CAY 2019	19 BE-5-EE-SKIT-Ph5b1-F02-V2.2											
			(∨ _{sc})	(I _{SC})	W _{sc}								
	Sample Calculations		Calculations to find officiency and regulation										
9	Sample Calculations		(Calculation		ency and regulation	JII						
		For example	for example at ½ full load										
		Cupper loss	ses = Wsc x (1	/2)² watts, y	where WSC -	= full – load cuppe	er losses	S					
		Constant losses = W0 watts Output = $\frac{1}{2}$ KVA x cos 0 [cos 0 may be assumed]											
	Input = output + Cu. Loss + constant loss												
	% Efficiency $= \frac{output}{v} \times 100$												
		/on mereney	' input	100									
10	Graphs, Outputs	X											
		%η ↑	$\phi_2 < \cos \phi_1$ $\cos \phi_2$ Cos ϕ_1 Output Power(→ X KW)									
11	Results & Analysis	hence perfo	ormed open	circuit and	short circuit	test on a single	phase t	transformer					
		and to pre transforme	e-determine	the efficie	ncy, regulat	ion and equivale	ent ciro	cuit of the					
12	Application Areas	Use	d in Generati	on , Transm	nission and D	istribution							
13	Remarks												
14	Faculty Signature with Date												

Experiment 02 : Sumpner's test on similar transformers and determination of combined and individual transformer efficiency.

-	Experiment No.:	1	Marks		Date Planned		Date Conducte	ed			
1	Title		Sumpner's test								
2	Course Outcomes	Exp tran	xperimentally verify the characteristics of transformer using two similar ransformers								
3	Aim	1) To hen 2) D	To conduct sumpner's test (heat run test) on two identical transformers and ence to Predetermine the efficiency and regulation. Determine combined and individual transformer efficiency.								
4	Material /						·····				
	Equipment Required	SLN	No PAR	TICULARS	RANGE	TYPE		QUANTITY			
		1	Amn	neter	0-2A	MI		1			
					0-10A	MI		1			
		2	Volt	meter	0-300V, 0-60	V, 0-6 0∕0 N		3			
		3 Wattmeter 1A,300V LPF 10A,75V UPF									
		4	Tran	sformer	1KVA	1-Ф		2			

LABC	RATORY PLAN - CAY 201g)		BE-5-EE-SKIT-PI	n5b1-F02-V2.2					
		5 Autotran	sformer -	-	2					
		6 SPST Sw	itch -	-	1					
5	Theory, Formula, Principle Concept	Total iron loss of t	ooth the transforme	$s = W_1$ Watts.						
		Total copp	er loss of both the t	ransformers = $W_2 v$	vatts.					
		Iron loss/ t	transformer = W_{IROI}	$_{N}=W_{1}/2$ Watts.						
		Copper los	s / transformer = W	$V_{\text{COPPER}} = W_2/2 \text{ Watt}$	tS					
		Losses in ea	the transformer = $\frac{W}{W}$	$\frac{W_c}{2}$						
		%η combin	$ed = \frac{VI_1}{VI_1 + W_i + W_c} x$	100						
		Efficiency of	of each transformer	$(\%\eta) = \frac{VI_1}{VI_1 + \frac{W_i}{2} + \frac{W_i}{2}}$	<u>V_</u> x100					
		The efficiency can be found out at unity power factor (Cos φ = 1) for the second se								
6	Procedure, Proaram.	uniterent values OI								
	Activity, Algorithm, Pseudo Code									
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	14 0 14 0 231V 51 Hz 0 14	0-2A V N S V 0-300V 0-10A V S V 0-10A V S V 0-75V	0-2A 0-300V W1 L.P.F 115/230V 1KVA WW V V V V V V V V V V V V V	115/230V 1KVA					
8	Observation Table, Look-up Table, Output	Т.	W.*K.	In	Wa*Ka Watte					
	Οιιριι	Amps	Watts	Amps	vv ₂ ix ₂ vvdus					

Experiment 03 : Parallel operation of two dissimilar single-phase transformers of different kVA and determination of load sharing and analytical verification given the Short circuit test data

-	Experiment No.:	1	Marks		Date Planned		Date	ed		
1	Title	Pa	rallel operati	on of two dis	similar sinale	e-phase tra	nsformers	of different kVA		
		an	d determinat	ion of load	sharing and	analvtical	verification	aiven the Short		
		circ	cuit test data					9		
2	Course Outcomes	Ana	lyze the load	d sharing of t	ransformers					
3	Aim	То	study the	performance	of two di	ssimilar s	ingle phas	e transformers		
		wh	en connecte	d in Parallel	& determin	ation of lo	oad sharing	, and analytical		
4	Material /	ver				r m	VDF			
'	Equipment Required	51	1N0				YPE	QUANTITY		
		1		Transforme	r	1.	Ф	2		
		2		Ammeter	0-10A,	0-5A, 0-2N	114.	3		
		3		Voltmeter	0-600	7, 0-300VA	1I	2		
		4		Wattmeter	10A,150 20A,150	V, U V	PF	2		
		5		SPST Switc	h -	-		1		
5	Principle, Concept	R_A	$Z_{B} = \frac{V_{sc2}}{I_{sc2}} = _{i}i$ $R_{A} = \frac{W_{sc1}}{I_{sc1}^{2}} = __________________________________$							
	Activity, Algorithm, Pseudo Code	01. 02. kep app var No that	The circuit Keep auto t open; the lied to the iac. te: If the vo t the two se perly. If the	is rigged up otransformer main supply primaries of ltmeter acros econdary wi e voltmeter s	as shown in in minimur is switched the transfo ss SPST swi ndings of t	the circui m position l ON. A s rmers by itch shows he two tra value oth	t diagram and the S mall voltag varying the s zero readi unsformers her than ze	SPST switch is ge (say 50V) is e output of the ng, it indicates are connected ro, it indicates		

		supply is switched OFF. Then the connections of the secondary terminals							
		of any one of the transformers are interchanged. After interchange							
	:	secondary terminals, the supply is switched ON and a small voltage is							
		applied. Now, the voltmeter will show zero reading.							
		03. The SPST switch is closed after confirming the zero voltage across it							
		and the rated voltage of the transformer is applied to the primary windings.							
		04. The no load readings of all the meters are noted down.							
		05. The lamp loads are applied in equal steps and the corresponding meter							
		readings are noted down and tabulated.							
		06. Loading is continued till one of the transformers carries its rated							
		current.							
		07. The loads are reduced to zero, the output of variac is reduced to zero							
		and the supply switch is opened.							
		08. Now, the connections are removed and short circuit test is conducted							
		on both the transformers separately, as explained in experiment number 01,							
		nd the readings are tabulated.							
		1. Bring the variac to minimum position and switch OFF the main supply.							
		2. Repeat the same procedure and note down 3 to 4 breakdown voltages.							
7	Block, Circuit, Model Diagram, Reaction								
	Equation, Expected Graph								
		Pill & Linning - UPF.							
		1874							
8	Look-up Table,								

LABORATORY PLAN - CAY 2019

BE-5-EE-SKIT-Ph5b1-F02-V2.2

properly. In that case, the output of the variac reduced to zero and the

LABC	DRATORY PLAN - CAY 2019				BE-5-EE-SKIT-Ph5b1-F02-V2.2						
	Output	Sl. No.	I _A Amps	I _B Amps	I∟Amps	W _A watts	W _B Watts	V _∟ Volts	W∟ watts		
9	Sample Calculations										
10	Graphs, Outputs										
11	Results & Analysis	B th	reakdown 1e two ele	strength ctrodes) ir	of oil = (E 1 kV/ mm	Breakdowr	n voltage/	/ Distance	between		
12	Application Areas										
13	Remarks										
14	Faculty Signature with Date										

Experiment 04 :Polarity test and connection of 3 single-phase transformers in star – delta and determination of efficiency and regulation under balanced resistive load.

	Experiment No.:	3	Marks	3	Date		Date				
					Planned		Conducte	ed			
1	Title	Pol	arity test and	d connection o	of 3 single-p	phase transfo	prmers in s	tar – delta and			
		det	ermination o	f efficiency an	d regulatior	n under balaı	nced resist	ive load.			
2	Course Outcomes	Ana	alyze of conn	ection of tran	sformer						
3	Aim	То	obtain the	e flash over	character	ristics of th	ne follow	ing electrode			
		cor	figuration in HVAC	air subjected	to						
			1 Plane	- plane electr	odes						
			2 Point	- point electro	des						
		,	3 Plane	- point electro	odes						
4	Material /						_				
		SU	No	PARTICULAR	S RANGE	TYP	PE	QUANTITY			
		1		Ammeter	0-5A	MI		2			
					0-10A	MI		1			
		2		Voltmeter	0-30V	MI		2			
		3		Wattmeter	0-5A,0-4	400V UP	F	2			
		4		3Ф Load	-	-		1			
		5		3Φ Auto TFI	R -	-		1			
		6		1Φ TFR of e rating	qu a lKVA	-		3			
					Ļ	l.					
5	Theory, Formula,	Let	V _{L1} = Line v	voltage on pri	mary side						
	Principle, Concept	V_{L2}	= Line volta	age on second	lary side						
		V_{ph1} = phase voltage on primary side									
		V_{ph}	$_{2}$ = phase vo	ltage on seco	ndary side						
		K=	transformat	ion ratio							

6	Procedure, Program, Activity, Algorithm, Pseudo Code	Therefore Since s V ph 2 $V_{L2} = K$ Output Input = 1. 2.	econd = V_{L2} $\frac{V_{L1}}{\sqrt{3}}$ = = W_{3} + $\frac{W_{1}+W_{1}}{\sqrt{3}}$ The c. Keepi autotr switch The 3	ary is c $= \frac{K}{\sqrt{3}} V$ $W_{4} = \frac{N_{2}}{\sqrt{2}} = \frac{1}{\sqrt{3}}$ ircuit is ng th ansform hed close	$K_{L1} = K$	$\frac{1}{\sqrt{3}}$ ed in de din de d	elta. shown itch i num p	in the n mi position	circuit nimum n, the	diagran 1 & 3-pha 2 the ra	m. the use su	3-phase ipply is
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	4. 5. 6.	Gradu Load Gradu to init	Auto (0-5/ T r) n f (0-5/ r m e (0-5/ r m e (0-5/ r m e (0-5/ r m e (0-5/	ad is aj ed unti ad is do position 5A, 600 B B B B C C C C C C C C C C	pplied	& at ea	ach ste rrent of nase au witch	p all the tra itotrans is open	10A, 400V,	UPF	lings are reached. ing back
							1-ph ti (1 KV)	ransformer A)	(0-10A)	(C		-
8	Observation Table, Look-up Table, Output	SL. No	V ₁ (v)	W ₁ ×K (W)	W ₂ xK (W)	W ₃ ×K (W)	₩ ₄ ×K (₩)	1 (A)	2 (A)	I ₃ (A)		%η

LAB	ORATORY PLAN - CAY 201g	BE-5-EE-SKIT-Ph5b1-F02-V2.2
9	Sample Calculations	%η = (Output/ Input)*100 =
		%Regulation= $(V_0 - V_1) / V_0 * 100 =$
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Used in industries generating stations
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 05 : Comparison of performance of 3 single-phase transformers in delta – delta and V – V (open delta) connection under load.

-	Experiment No.:	1	Marks		Date Planned		Date Conducted				
1	Title	С	omparison o	f performance	e of 3 single	-phase trans	formers in c	lelta – delta			
				and V – V (op	en delta) co	onnection un	der load.				
2	Course Outcomes	An	alyze different winding connection of transformer.								
3	Aim	То	o compare the performance of 3 single-phase transformers in delta $-$								
		del	lelta and $v - v$ (open delta) connection under load								
4	Material / Equipment	Sl	No	PARTICULAF	RANGE	TYF	PE G	UANTITY			
	Required	1		Ammeter	0-5A, 0-:	IOA MI		2, 1			
		2		Voltmeter	0-30V	MI		2			
		3		Wattmeter	0-5A,0-4	.ooV UPF	-	2			
		4		3 Φ Load	-	-		1			
		5	1	3 Ф Auto TFR	-	-		1			
		6	i	1 Ф TFR c brating	of 10×QuAal	-		3			
5	Theory, Formula, Principle, Concept										
6	Procedure, Program, Activity, Algorithm, Pseudo Code										

LABORATORY PLAN - CAY 2019			BE-5-EE-SKIT-Ph5b1-F02-V2.2
13	Remarks		
14	Faculty	Signature	
	with Date	_	

Experiment 06 : Scott connection with balanced and unbalanced loads.

-	Experiment No.:	1	Marks		Date Planned		Date Conducted	d l
1	Title	Sco	ott connect	ion with bala	anced and u	unbalanced	loads	
2	Course Outcomes	Ana	alyze conver	sion of 3phas	e to 2phase			
3	Aim	Sco	tt connectio	n with baland	ed and unba	alanced load	S.	
4	Material / Equipment Required	SI I	No	PARTICUL	ARS RANGE	TYP	E (QUANTITY
		1		Transforme tapings)	r (V2KHVA	А 1-Ф	,	2
		2		Ammeter	0-10A	MI		2
		3		Voltmeter	0-300	/ MI		2
		4		Wattmeter	10A,300	V UP	F	2
5	Theory, Formula Principle, Concept							
7	Activity, Algorithm, Pseudo Code Block, Circuit, Mode	ster ster ster ster ster	o 2: o 3: o 4: o 5: o 6: o 7:					1
	Diagram, Reaction Equation, Expected Graph	ц 3 50	¢ Hz	Auto Auto R A N S F O R M E R		[I-IIA] - UP.F.		
8	Observation Table Look-up Table Output	,						
9	Sample Calculations							
10	Graphs, Outputs							
11	Results & Analysis							

LAB	ORATORY PLAN - CAY 2019	BE-5-EE-SKIT-Ph5b1-F02-V2.2
12	Application Areas	
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 07 : Separation of hysteresis and eddy current losses in single phase transformer.

-	Experiment No.:	1	Marks		Date Planned		Date Conducted	
1	Title	Over	Current Re	elay				
2	Course Outcomes							
3	Aim	Sepa	ration of hy	ysteresis and	eddy curren	t losses in si	ngle phase tr	ansformer.
4	Material /							
	Equipment Required							
5	Theory, Formula, Principle, Concept							
6	Procedure, Program, Activity, Algorithm, Pseudo Code	step : step : step : step : step :	1: 2: 3: 4: 5:					
		step ⁻	7:					
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	+ + 220V - +		Start	A O 0-2A) A1 M A2 1.2A CI 0-2A A	Alternator Field F FF	104,60 W1 M m L C V 500V	0V, LPF
8	Observation Table, Look-up Table, Output							
9	Sample Calculations							
10	Graphs, Outputs							
11	Results & Analysis							
12	Application Areas							
13	Remarks							
14	Faculty Signature with Date							

LABORATORY PLAN - CAY 2019 Experiment 08 : VOLTAGE REGULATION OF AN ALTERNATOR BY I) EMF METHOD **II) MMF METHOD.**

-	Experiment No.:	1	Marks		Date Planned		Date Conducted	
1	Title	Ove	er Current Re	elav				
2	Course Outcomes			j				
3	Aim							
4	Material /							
	Equipment Required							
5	Theory, Formula,			Stra	ter			
	Principle, Concept			L	FΑ			
		+ 22 -		E		-2A F FF A	TPST 600V	0-5A
6	Procedure, Program,	ste	D 1:					
	Activity, Algorithm,	ste	D 2:					
	Pseudo Code	step	D 3:					
		ster	5 4:					
		ster	55. 56 [.]					
		ster	5 5. 5 7:					
7	Block, Circuit. Model		- , ·					
	Diagram, Reaction Equation, Expected Graph							
8	Observation Table,							
	Look-up Table,							
	Output							
9	Sample Calculations							
10	Graphs, Outputs							
11	Results & Analysis							
12	Application Areas							
13	Remarks							
14	⊩aculty Signature with Date							

LABORATORY PLAN - CAY 2019 BE-5-EE-SKIT-Ph5b1-F02-V2.2 Experiment 09: VOLTAGE REGULATION OF AN ALTERNATOR BY ZPF METHOD.

-	Experiment No.:	1	Marks		Date Planned		Date Conducted	
1	Title		VOLTAGE	EREGULATI	ON OF AN A		BY ZPF MET	HOD.
2	Course Outcomes							
3	Aim							
4	Material /							
	Equipment Required							
5	Theory, Formula,							
	Principle, Concept							
6	Procedure, Program,	step 1:						
	Activity, Algorithm,	step 2:						
	Pseudo Code	step 3:						
		step 4:						
		step 5.						
		step 0. 5°						
7	Block Circuit Model	step /						
′	Diagram Reaction			Strater				
	Equation. Expected			LFA		moon		
	Graph		Г				0-10A	
							_(A)	3 - nhasa
						0 600V		Inductine Load
				2300		Ŵ		
		+		1.7A	A1 R	Ϋ́Ι		
		T	V V	co 🖉			(<u>्र</u> ो
		220V DC		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-+ <u> </u> \/\		we len
		. 🖌		F1	A2 Y Alterna	tor	\ \	
			\mathbb{H}^{\vee}	3				\sim
				F2 🖓				
						/		
				570Ω, 1.2A CI	. 0-24 F FF			
					(`Am			
				/	· 0			
<u> </u>								
8	Observation Table,							
	LOOK-UP Table,							
	Sample Calculations							
10	Graphe Outpute							
11	Posulta & Apolycia							
11	Application Aroas							
12	Pomarks							
11	Faculty Cignature							
14	with Date							
	with Date							

Experiment 10 : SLIP TEST ON SALIENT POLE ALTERNATOR

-	Experiment No.:	1	Marks		Date Planned		Date Conducted	
					i tuillea		Conducted	
1	Title			SLIP TEST (ON SALIENT	POLE ALTER	RNATOR	
2	Course Outcomes							
3	Aim							
4	Material /							
	Equipment Required							
						Convright @		rights reconved

LABC	ORATORY PLAN - CAY 2019	BE-5-EE-SKIT-Ph5b1-F02-V2.2
5	Theory, Formula,	
	Principle, Concept	
6	Procedure, Program,	step 1:
	Activity, Algorithm,	step 2:
	Pseudo Code	step 3:
		step 4:
		step 5:
		step 6:
		step 7:
7	Block, Circuit, Model	Starter
	Diagram, Reaction	T E A
	Equation, Expected	L Г А ПРАТ
	Graph	
		o oor
		V $Z_{30\Omega}$ $Z_{30\Omega}$ $Z_{30\Omega}$ $Z_{30\Omega}$ $Z_{30\Omega}$ $Z_{30\Omega}$ $Z_{30\Omega}$ $Z_{30\Omega}$
		$(M) = \mathbb{I}(\mathcal{Y}_{\mathcal{Y}}) \mathcal{N} \cap \mathbb{R} \mathcal{Y}$
		$F_1 \rightarrow F_1 \rightarrow A^2$ Alternator
		Field Circiut is Open
8	Observation Table,	
	Look-up Table,	
	Output	
9	Sample Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 11 : **PERFORMANCE OF SYNCHRONOUS MOTOR CONNECTED TO INFINITE BUS, CONSTANT POWER VARIABLE EXCITATION & VICE VERSA**

-	Experiment No.:	1	Marks		Date	Date
	•				Planned	Conducted
1	Title			SLIP TEST (ON SALIENT POLE ALTE	RNATOR
2	Course Outcomes					
3	Aim					
4	Material /					
	Equipment Required					
5	Theory, Formula,					
	Principle, Concept					
6	Procedure, Program,	ste	O 1:			
	Activity, Algorithm,	ste	o 2:			
	Pseudo Code	ste	o 3:			
		ste	o 4:			
		ste	o 5:			
		ste	o 6:			
		ste	o 7:			

LABC	DRATORY PLAN - CAY 2019	BE-5-EE-SKIT-Ph5b1-F02-V2.2
7	Block, Circuit, Model	Starter
	Diagram, Reaction Equation, Expected Graph	$\begin{array}{c} L & F & A \\ \hline 0 & 0 & 0 \\ \hline 0 & 0 & 0$
8	Observation Table, Look-up Table, Output	
9	Sample Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
13	Remarks	
14	Faculty Signature with Date	

Experiment 12 : POWER ANGLE CURVE OF SYNCHRONOUS GENERATOR

	-		-	1				
-	Experiment No.:	1	Marks		Date		Date	
					Planned		Conducted	
1	Title		POW	ER ANGLE C	JRVE OF SYN	NCHRONOU	S GENERATO	DR
2	Course Outcomes							
3	Aim							
4	Material /							
	Equipment Required							
5	Theory, Formula,	,						
	Principle, Concept							
6	Procedure, Program,	ste	p 1:					
	Activity, Algorithm,	ste	p 2:					
	Pseudo Code	ste	o 3:					
		ste	p 4:					
		ste	p <u>5</u> :					
		ste	p 6:					
		ste	p 7:					

LABC	RATORY PLAN - CAY 2019	BE-5-EE-SKIT-Ph5b1-F02-V2.2
7	Block, Circuit, Model	Starter
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Starter L F A (0-10A) TPST (0-10A) $(0-10A)$ $(0$
		F_2 F_2
8	Observation Table, Look-up Table,	
	Output	
9	Sample Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	
13	Remarks	
14	Faculty Signature with Date	